
We present a new nonlinear optimization procedure for the computation of generalized
Gaussian quadratures for a broad class of functions. While some of the components
of this algorithm have been previously published, we present a simple and robust
scheme for the determination of a sparse solution to an underdetermined nonlinear
optimization problem which replaces the continuation scheme of the previously pub-
lished works. The performance of the resulting procedure is illustrated with several
numerical examples.

A Nonlinear Optimization Procedure for Generalized

Gaussian Quadratures

James Bremer†, Zydrunas Gimbutas‡, Vladimir Rokhlin#∗

Technical Report YALEU/DCS/TR-1406
June 30, 2008

∗ This research was supported in part by NGA under contracts HM1582-06-1-2039,
HM1582-06-1-2037, and by ONR under the grant N00014-07-1-0711.

† Dept. of Mathematics, Univ. of California at Davis, Davis, CA 95616
Dept. of Computer Science, Yale University, New Haven CT 06520
‡ Courant Institute, NYU, New York, NY, 10012

Approved for public release: distribution is unlimited.
Keywords: Quadrature, Chebychev systems, Gaussian, SVD

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
30 JUN 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
A Nonlinear Optimization Procedure for Generalized Gaussian
Quadratures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Yale University ,Department of Computer Science,New
Haven,CT,06520-8285

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

34

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

1. Introduction

Classical Gaussian quadrature rules are optimal formulas for the evaluation of
integrals of the form

(1.1)

∫ b

a

P (x)ω(x)dx

where P (x) is a polynomial and ω : [a, b] → R+ is an essentially arbitrary nonnegative
weight function; they are optimal in sense that an n-point Gaussian quadrature rule
integrates polynomials of degree n − 1 exactly with respect to the weight function
ω. They are extremely efficient as long as functions to be integrated are smooth or
of the form f(x) = g(x)w(x) where g(x) is smooth and w(x) is fixed and known a
priori. However, they perform poorly in a number of instances of great importance
in computational mathematics. Of particular interest is the integration of functions
f which admit representations of the form

(1.2) f(x) =

n
∑

i=1

αiφi(x),

where the φi are oscillatory, singular, or both and known a priori but the coefficients
αi are not. Then each of the functions φi(x) can exhibit a different type of singularity
or a different frequency of oscillation, and classical Gaussian quadrature rules perform
very poorly. Many such integrals arise in computational physics (see, for instance,
[4] and [18]).

It has long been known that Gaussian quadratures admit generalization to a fairly
broad class of systems of functions (see [11, 12, 15, 16, 13]). We adopt the termi-
nology of [14, 20, 3], and say that a generalized Gaussian quadrature for a collection
{φ1, . . . , φ2n} of 2n functions and a nonnegative weight function ω is an n-point
quadrature rule

(1.3)

n
∑

j=1

φ(xj)wj ∼
∫ b

a

φ(x)ω(x)dx

exactly integrating each of the φi with respect to the weight function ω.
The constructions found in [11, 12, 15, 16, 13] do not lead readily to numerical al-

gorithms for the design of generalized Gaussian quadrature rules. In [14], a numerical
algorithm is introduced for the construction of generalized Gaussian quadrature rules
for a fairly broad class of functions. The approach is based on the observation that
the nodes xj and weights wj of a generalized Gaussian quadrature satisfy a nonlinear
system of equations. The procedure of [14] is a variant of Newton’s algorithm cou-
pled with a continuation scheme for the generation of a suitable initial point for the
modified Newton iterations. In [20] and [3], the continuation scheme of [14] is refined,
improving the stability of the algorithm, and a new preprocessing step is added in
[20], greatly expanding its range of applicability.

The present paper introduces a new numerical procedure for obtaining generalized
Gaussian quadrature rules. While we also use Newton-type iterations to solve nonlin-
ear systems of equations, our scheme differs from the algorithm of [14, 20, 3] in that
the continuation method is abandoned in favor of a simpler, more robust approach.

3

The paper is structured as follows. Section 2 contains mathematical and numerical
preliminaries. In section 3, we describe certain standard numerical tools used by the
algorithm. Section 4 describes the algorithm in detail. Section 5 contains several ex-
amples of quadratures we have obtained. Finally, in Section 6, we present conclusions
and discuss several possible extensions of this work.

2. Mathematical and numerical preliminaries

2.1. Generalized Gaussian and Chebyshev quadratures. The quadrature for-
mulas considered in this paper are of the form

(2.1)

n
∑

j=1

φ(xj)wj .

where the xj and ωj are real numbers. We will refer to the xj as the nodes and the
wj as the weights of the quadrature formula (2.1). They will be used to approximate
integrals of the form

(2.2)

∫ b

a

φ(x)ω(x)dx

where ω(x) is a nonnegative weight function.
Quadratures are typically chosen so as to make (2.1) exact for some set of functions,

commonly polynomials of a fixed order. Classical Gaussian quadrature rules consist
of n nodes and n weights which integrate polynomials of order 2n−1 exactly. In [14],
the notion of a Gaussian quadrature was generalized as follows:

DEFINITION 2.1. A quadrature formula will be referred to as Gaussian with re-
spect to a set of 2n functions φ1, . . . , φ2n : [a, b] → R and a weight function ω : [a, b] →
R+ if it consists of n nodes and n weights and integrates exactly the functions φi with
respect to the weight function ω for all i = 1, . . . , 2n. The weights and nodes of a
Gaussian quadrature will be referred to as Gaussian weights and nodes, respectively.

Although Chebyshev quadratures are classical Gaussian quadratures on the interval
[−1, 1] with respect to the weight function ω(x) = (1−x2)−1/2, in practice, Chebyshev
nodes and weights are often used to integrate functions on [−1, 1] with respect to
the weight function ω(x) = 1. This practice leads to a 2n-point quadrature which
integrates exactly polynomials of order 2n−1, and motivates the following definition:

DEFINITION 2.2. A quadrature formula will be referred to as a Generalized Cheby-
shev quadrature for a set of 2n functions φ1, . . . , φ2n : [a, b] → R and a weight function
ω : [a, b] → R+ if it consists of 2n nodes and 2n weights and integrates exactly the
functions φi with respect to the weight function ω for all i = 1, . . . , 2n. The weights
and nodes of a Chebyshev quadrature will be referred to as Chebyshev weights and
nodes, respectively.

2.2. Quadrature rules and optimization. Let m,n be integers with m ≤ 2n and
let x1, . . . , xn, w1, . . . , wn be a quadrature rule

(2.3)

∫ b

a

f(x)ω(x)dx ∼
n
∑

j=1

f(xj)wj

4

which is exact for the functions φ1, . . . , φm. Obviously, the weights wj and nodes
xj of such a quadrature satisfy the (generally underdetermined) nonlinear system of
equations

F1(x1, . . . , xn,w1, . . . , wn) = b1

F2(x1, . . . , xn,w1, . . . , wn) = b2(2.4)

...

Fm(x1, . . . , xn,w1, . . . , wn) = bm,

where

(2.5) Fi(x1, . . . , xn, w1, . . . , wn) =
n
∑

j=1

φi(xj)wj,

and

(2.6) bi =

∫ b

a

φi(x)ω(x)dx.

When m = 2n, the nodes xj and weights wj in (2.4) form a generalized Gauss-
ian quadrature for the functions φ1, . . . , φ2n. In [11] and [13], the existence of a
unique solution of (2.4) is proven under certain conditions on the system of functions
φ1, . . . , φ2n. It is observed in [14, 20, 3] that solutions, or at least approximate solu-
tions, of (2.4) exist for many systems of 2n functions not satisfying those conditions.

In this paper, we will encounter systems of the form (2.4) where m < 2n. Under
these conditions, the system does not admit a unique solution. Non-uniqueness is not,
however, an obstruction to the determination of a quadrature rule for the functions
φ1, . . . , φm since such a rule is given by any solution of the system (2.4). Indeed, even
in the case when there is no exact solution of (2.4), it is often possible to construct
an approximate quadrature for the functions φ1, . . . , φm.

We close this section with the following definition:

DEFINITION 2.3. Suppose φ1, . . . , φm : [a, b] → R are square integrable with re-
spect to the nonnegative integrable weight function ω. We say that a quadrature rule
x1, . . . , xn, w1, . . . , wn integrates φ1, . . . , φm with precision ǫ > 0 if

(2.7)
m
∑

i=1

|Fi(x1, . . . , xn, w1, . . . , wn) − bi|2 ≤ ǫ2,

where

(2.8) Fi(x1, . . . , xn, w1, . . . , wn) =
n
∑

j=1

φi(xj)wj

and

(2.9) bi =

∫ b

a

φj(x)ω(x)dx

for all i = 1, . . . , m.

5

2.3. Quadrature and interpolation. It is well known that when Chebyschev nodes
are used for polynomial interpolation on the interval [−1, 1], the procedure is numer-
ically stable and the convergence properties are close to optimal (see [19] and [6]).
In this subsection, we prove that the nodes of any Gaussian quadrature and many
generalized Gaussian quadratures lead to stable interpolation formulas.

The principal analytic tool of this subsection is the following obvious theorem (see,
for example, [20]).

THEOREM 2.1. Suppose that the weight function ω : [a, b] → R is nonnegative
and the functions φ1, . . . , φn : [a, b] → R are orthonormal with respect to ω. Suppose
further that the n-point quadrature rule x1, . . . , xn, w1, . . . , wn is exact for all products
of the form φi(x)φj(x) and wi > 0 for all 1 ≤ i ≤ n. Then the n × n matrix A with
entries

(2.10) Aij =
√
wjφi(xj)

is orthogonal.

Now let f be a function of the form

(2.11) f(x) =
n
∑

j=1

αiφi(x).

We would like to construct an interpolation formula on the interval [a,b] for functions
of this form; that is, given the values f1, . . . , fn of a function of the form (2.11)
at a collection of points x1, . . . , xn, we would like a formula for determining the
coefficients α1, . . . , αn. Let α be the vector α = (α1, . . . , αn), let F be the vector
F = (f1, f2, . . . , fn), and finally, let B be the n× n matrix with entries

(2.12) Bij = φi(xj).

Then

(2.13) F = Bα,

and assuming that B is invertible, it follows that

(2.14) α = B−1F.

If the condition number of B is not too high, then (2.14) is a numerically stable
formula for computing the coefficients α1, . . . , αn. The following observation is the
principal observation of this subsection.

Observation 2.1. Under the conditions of Theorem 2.1, the matrix B in the inter-
polation formula (2.14) is of the form

(2.15) B = DQ,

where D is a diagonal matrix with entries

(2.16) Dii =
1√
wi

and Q is orthogonal. Thus

(2.17) α = Q∗D−1F.

In other words, the coefficients α can be obtained by applying a diagonal matrix
followed by an orthogonal matrix.

6

2.4. The damped Gauss-Newton method. The damped Gauss-Newton method
is a well-known iterative technique for the solution of nonlinear least-squares prob-
lems. It converges under very general conditions, and does not require that the
Jacobian of the system be nonsingular. Here we give only elementary details; a more
thorough treatment can be found in [7].

Suppose that R : Rn → Rm is a continuously differentiable function of the form

(2.18) R(x) =

r1(x)
r2(x)

...
rm(x)

and let J(x) be the Jacobian

(2.19) J(x) =

∂r1

∂x1

(x) . . . ∂r1

∂xn
(x)

...
...

∂rm

∂x1

(x) . . . ∂rm

∂xn
(x)

of R at the point x. The damped Gauss-Newton method is a numerical method for
minimizing the function

(2.20) f(x) =
1

2

m
∑

j=1

|rj(x)|2.

It belongs to a broad class of numerical optimization methods which proceed from
an initial guess x0 by forming a sequence x1, x2, . . . of iterates via the formula

(2.21) xk+1 = xk + αkdk

where dk is referred to as the search direction at iteration k and αk is a carefully
chosen step size.

The primary purpose of this section is Theorem 2.2 below, which gives conditions
under which an iteration of the form (2.21) converges. We start with the following
definition:

DEFINITION 2.4. Let f : Rn → R be a continuously differentiable function and
consider any iteration of the form (2.21). We say that the step length αk and step
direction dk satisfy the Wolfe conditions at the point xk if

f(xk + αkdk) ≤ f(xk) + λαk∇f(xk) · dk,(2.22)

and

∇f(xk + αkdk) · dk ≥ β∇f(xk) · dk(2.23)

for some constants λ ∈ (0, 1) and β ∈ (λ, 1).

The following theorem can be found in [7]:

THEOREM 2.2. Suppose that f : Rn → R is a continuously differentiable function
bounded from below, and assume that there exists γ ≥ 0 such that

(2.24) ‖∇f(x) −∇f(y)‖2 ≤ γ‖x− y‖2

7

for every x and y in Rn. Consider any iteration of the form (2.21) such that for each
k = 0, 1, . . . the pair (dk, αk) satisfies the Wolfe conditions. If, in addition, one of the
conditions

∇f(xk) · dk < 0(2.25)

or

∇f(xk) = 0 and dk = 0(2.26)

holds for each k = 0, 1, . . ., then either

(2.27) ∇f(xk) = 0 for some k ≥ 0,

or

(2.28) lim
k→∞

∇f(xk) · dk

‖dk‖2
= 0.

Remark 2.1. Theorem 2.2 states that either the sequence xk converges to a critical
point for the function f or the direction dk become orthogonal to the gradient of f .
In practice, it is easy to avoid the later condition, thus ensuring the convergence of
∇f(xk) to 0.

Remark 2.2. Under mild conditions on the function f , given a sequence of {dk} sat-
isfying condition (2.25), there exists a sequence of αk satisfying the Wolfe conditions
(see, for example, [7] Theorem 6.3.2).

In the case of the damped Gauss-Newton method, the search direction dk is chosen
as a solution to the least-squares problem

(2.29) min
dk

||J(xk)dk +R(xk)||2,

which is an affine approximation to the nonlinear least-squares problem

min
x

||R(x)||2.

Since

(2.30) ∇f(xk) = J∗(xk)R(xk),

we have

(2.31) 〈∇f(xk), dk〉 = 〈R(xk), J(xk)dk〉 .
The search direction dk is chosen so that J(xk)dk is the projection of −R(xk) onto
the column space of J(xk). It follows that

(2.32) 〈∇f(xk), dk〉 = 〈R(xk), J(xk)dk〉 ≤ 0.

If we choose dk to be 0 in the event that 〈∇f(xk), dk〉 = 0, then we obtain the
following theorem:

THEOREM 2.3. Suppose that R : R
n → R

m is a continuously differentiable func-
tion of the form (2.18), f : Rn → R is given by (2.20), and the Jacobian, J(x), of R
is given by (2.19). Further suppose that ‖J(x)‖2 is bounded on Rn and there exists a
constant γ > 0 such that

‖J(x) − J(y)‖2 ≤ γ‖x− y‖2

8

for all x and y in Rn. If xk is defined by the iteration

xk+1 = xk + αkdk

where, for each k = 1, 2, . . ., dk is a solution of the least-squares problem

||J(xk)dk +R(xk)||2 = min
v

||J(xk)v +R(xk)||2,

and the sequence {αk} is chosen so that the pairs (dk, αk) satisfy the Wolfe conditions
for k = 0, 1, . . ., then either

∇f(xk) = 0 for some k ≥ 0

or

lim
k→∞

∇f(xk) · dk

‖dk‖2

= 0.

2.5. Singular value decomposition. The SVD is a ubiquitous tool in numerical
analysis (see, for instance, [8]). Here we discuss it in the case of real matrices.

LEMMA 2.1. (SVD). For any n ×m real matrix A, there exist, for some integer
k, an n × k real matrix U with orthonormal columns, an m × k real matrix V with
orthonormal columns, and a k×k real diagonal matrix Σ with positive diagonal entries
σ1 ≥ σ2 ≥ . . . ≥ σk > 0, such that

(2.33) A = U · Σ · V ∗.

The diagonal entries of Σ are called singular values, the columns of the matrix U
are called the left singular vectors, and the columns of the matrix V are called right
singular vectors.

One of the most common applications of the SVD is the approximation of matrices;
if we let Σp denote the diagonal matrix with entries

Dii =

{

σi if i ≤ p

0 otherwise
,

then

(2.34) ‖A− UΣpV
∗‖2 = σp+1.

The matrix UΣpV
∗ is, in fact, the optimal rank p approximation of the matrix A

(see, for instance, [8]); that is,

(2.35) min
Ak

‖A−Ak‖2 = σp+1

where Ak ranges over the set of all n×m matrices of rank k.

2.6. QR decompositions. The singular value decomposition provides the means to
construct an optimal rank k approximation to a given matrix; however, the SVD can
be expensive to form, and other less computationally expensive matrix factorizations
can be used to compress matrices in lieu of the SVD.

By a slight abuse of terminology, we will refer to the factorization in the following
obvious lemma as a “QR decomposition.”

9

LEMMA 2.2. For any n×m real matrix A, there exist an integer k, an n× k real
matrix Q with orthonormal columns, an m×m permutation matrix Π, and a k ×m
real matrix R with the block form

R =
(

T M
)

,

where T is a k× k upper triangular matrix with positive diagonal entries and M is a
general k × (m− k) matrix, such that

(2.36) AΠ = QR.

Moreover, there is a one-to-one correspondence between m×m permutation matrices
Π and decompositions of the form (2.36).

The following theorem can be found (in a stronger form) in [10].

THEOREM 2.4. Suppose that A is a real m× n matrix with singular values σ1 ≥
σ2 ≥ . . . ≥ σr > 0. For any integer p, 0 < p ≤ r, there exists an m×m permutation
matrix Π such that the QR decomposition uniquely determined by Π is of the form

(2.37) AΠ = Q

(

R11 R12

0 R22

)

,

where R11 is a p× p upper triangular matrix with positive diagonal entries, and

(2.38) ‖R22‖2 ≤
√

1 + (n− k)σp+1.

Remark 2.3. Theorem 2.4 implies that given any real m×n matrix A with singular
values σ1 ≥ σ2 ≥ . . . ≥ σr > 0 and any integer 0 < k < r, there is a permutation ma-
trix Π such that the well-known Gram-Schmidt orthogonalization procedure (see, for
example, [8]) applied to the matrix AΠ results in the approximate matrix factorization

(2.39) ‖A−QS‖2 ≤ cσk+1,

where Q is an m×k matrix with orthonormal columns and S is a k×n matrix S. Note
that the error bound (2.39) is close to the optimal error for rank k approximations to
A.

Remark 2.4. When properly implemented, the modified Gram-Schmidt algorithm
with reorthogonalization is a reliable method for obtaining a QR decomposition (see,
for instance, [2]). While there are no guaranteed bounds of the form (2.39) for this
algorithm, it does well in practice. In [10], robust, provably stable algorithms are
introduced for producing QR decompositions that satisfy bounds of the form (2.39).

2.7. Analogs of matrix factorizations for finite sequences of functions. Here
we introduce analogs of the matrix factorizations of the preceding two subsections
for finite sequences of functions. We begin with the following obvious generalization
of Lemma 2.2.

LEMMA 2.3. For any finite sequence φ1, . . . , φm : [a, b] → R of square integrable
functions, there exists an integer k ≤ m, a permutation Π ∈ Sm, a collection of
orthonormal functions q1, . . . , qk : [a, b] → R, and an k × m real matrix R = (rij)
with the block form

(

T M
)

10

where T is a k× k upper triangular matrix with positive diagonal entries and M is a
general k × (m− k) matrix, such that

(2.40) φΠ(j)(x) =

max(j,k)
∑

i=1

rijqi(x)

for all j = 1, . . . , m. Moreover, there is a one-to-one correspondence between decom-
positions of this form and permutations Π ∈ Sm.

By analogy with the finite dimensional case, we will refer to decompositions of
this type as QR decompositions. The functions qi(x) will be referred to as QR
functions and we will call the diagonal entries rii of R the normalizing factors of the
decomposition.

As in the case of matrices, a common application of expansions of the form (2.40)
is the “compression” of the functions φj; that is, often permutations Π ∈ Sm can be
found for which the truncated series

(2.41)

p
∑

j=1

aijqi(x),

with p < k, provide good approximations to the functions φΠ(j).
Now, we restate a result found in [3], generalizing the SVD to the case of a finite

sequence of functions.

THEOREM 2.5. Suppose that the functions φ1, . . . , φm : [a, b] → R are square
integrable. Then there exist an integer k, a finite orthonormal sequence of functions
u1, . . . , uk : [a, b] → R, an m× k matrix V = (vij) with orthonormal columns, and a
sequence s1 ≥ s2 ≥ · · · ≥ sk > 0 ∈ R such that

(2.42) φj(x) =

k
∑

i=1

ui(x)sivji

for all x ∈ [a, b] and all j = 1, . . . , m. The sequence s1, . . . , sk is uniquely determined
by k.

By analogy with the finite-dimensional case, we will refer to this decomposition
as the SVD of a finite sequence of functions. We call the functions ui the singular
functions, the columns of V the singular vectors, and the values si the singular values.
The SVD is clearly a useful tool for the compression of the sequence φ1, . . . , φm: if
we let φ̃j(x) denote the p-term truncation

(2.43) φ̃j(x) =

p
∑

i=1

ui(x)sivji

of the sum (2.42), then

(2.44) ‖φ̃j(x) − φj(x)‖ ≤ sp+1

for j = 1, . . . , m.
However it is obtained, using an approximate representation

(2.45) φj(x) ∼
p
∑

i=1

αiqi(x),

11

integrals of the form

(2.46)

∫ b

a

φj(x)ω(x)dx

can be approximated as
∫ b

a

φj(x)ω(x)dx ≈
∫ b

a

(

p
∑

i=1

αiqi(x)

)

ω(x)dx

=

p
∑

i=1

αi

∫ b

a

qi(x)ω(x)dx;(2.47)

thus, a quadrature which is exact for the integrals

(2.48)

∫ b

a

qi(x)ω(x)dx

for i = 1, . . . , p, can be used as an approximate quadrature for the integrals

(2.49)

∫ b

a

φj(x)ω(x)dx

for j = 1, . . . , m.

2.8. Underdetermined systems. The purpose of this short subsection is the state-
ment of two lemmas on the existence and behavior of sparse solutions of underdeter-
mined systems.

We begin with the following result on the existence of well-behaved solutions to
underdetermined least-squares problems, whose proof is an elementary exercise in
linear algebra.

LEMMA 2.4. Suppose that A is an n×m matrix, n < m, with left singular vectors
u1, . . . , uk and singular values σ1 ≥ . . . ≥ σk > 0. For 0 < p ≤ k, let Up be the
subspace of Rn spanned by u1, . . . , up, and let Projp : Rn → Up denote the projection
operator Rn → Up. Then, given any vector b ∈ Rn and any integer 0 < p ≤ k, there
exists a vector x ∈ Rm with no more than p nonzero entries such that

(2.50) ‖Ax− b‖2 = ‖Projpb− b‖2

and

(2.51) ‖x‖2 ≤
σ1

σp
‖b‖2.

Let A be an n×m matrix with n < m and consider the least-squares problem

(2.52) min
x

‖Ax− b‖2,

where b is a given vector in Rn. The problem is underdetermined and therefore the
condition number of A is infinite. However, Lemma 2.4 implies that if b is in the span
of a small number of singular vectors of A, then a well-behaved approximate solution
x to the least-squares problem (2.52) can still be found.

The second lemma is a stronger, but more specialized result, whose proof is an
easy corollary of the following theorem, which appears as Theorem 2 in [17].

12

THEOREM 2.6. Suppose that S is an arbitrary set, n is a positive integer, f1, . . . , fn

are bounded complex-valued functions on S, and ǫ is a positive real number such that

(2.53) ǫ ≤ 1.

Then, there exist n points x1, . . . , xn in S and n functions g1, . . . , gn on S such that

(2.54) |gk(x)| ≤ 1 + ǫ

for all x in S and k = 1, 2, . . . , n, and

(2.55) f(x) =

n
∑

k=1

f(xk)gk(x)

for all x in S and any function f defined on S via the formula

(2.56) f(x) =

n
∑

k=1

ckfk(x).

Moreover, if the set S is finite, then g1, . . . , gn can be chosen so that (2.54) holds with
ǫ = 0.

LEMMA 2.5. If

(2.57) Ax = b,

where A is an m × n matrix of rank m, then there exists a vector x̃ ∈ Rn with no
more then m nonzero entries such that

Ax̃ = b,

and

‖x̃‖1 ≤ m‖x‖1.

Proof: By Theorem 2.6, there exists an m×n matrix G whose entries are bounded
by 1 and an m×m matrix of Ã consisting of m columns Ai1 , . . . , Aim of A such that

(2.58) A = ÃG.

Since Ax = b, it follows that

(2.59) ÃGx = b.

If we let y = Gx ∈ Rm and define x̃ by the formula

(2.60) x̃j =

{

yk if j = ik,

0 otherwise
,

13

then x̃ has at most m nonzero entries, Ax̃ = b, and

‖x̃‖1 =

m
∑

i=1

|x̃i|(2.61)

=

m
∑

i=1

∣

∣

∣

∣

∣

n
∑

j=1

gijxj

∣

∣

∣

∣

∣

(2.62)

≤
m
∑

i=1

n
∑

j=1

|xj |(2.63)

≤ m‖x‖1,(2.64)

as desired.

Remark 2.5. For sets S which are finite, the proof of Theorem 2.6 given in [17]
is constructive, but the procedure is computationally infeasible. To wit, in the spe-
cial case of Lemma 2.5, the scheme of [17] amounts to the choice of a submatrix Ã
consisting of a set of columns Ai1 , . . . , Aim of A which maximize the determinant

(2.65) det
(

Ai1 Ai2 . . . Aim

)

over the collection of all sets of m columns of the matrix A. The existence of the
matrix G follows since

det(Ã) 6= 0

by construction, and the bound on the entries of G follows from Cramer’s rule.

Remark 2.6. In practice, the modified Gram-Schmidt procedure with reorthogonal-
ization can be used to find a set of m columns Ai1 , . . . , Aim of the m × n rank m
matrix A such that

(2.66) det
(

Ai1 Ai2 . . . Aim

)

is comparable to the supremum

(2.67) sup
j1,...,jm

det
(

Aj1 Aj2 . . . Ajm

)

over all collections of m columns of A. Indeed, the modified Gram-Schmidt procedure
is nothing more than a “greedy” algorithm for finding an approximate solution to the
optimization problem

(2.68) argmax
j1,...,jm

det
(

Aj1 Aj2 . . . Ajm

)

.

An obvious modification of the argument in [17] (which is sketched above in Remark
2.5) shows that once such a set of columns i1, . . . , im has been found, the matrix A
can factored as

A = ÃG,

where Ã is an m ×m submatrix of A and G is an m × n matrix whose entries are
bounded in absolute value, but not necessarily by 1.

Remark 2.7. Strong rank revealing QR factorizations (see [10] and [2], for instance)
identify a spanning set Ai1 , . . . , Aim of columns of an m× n matrix A of rank m for
which the ratio of

det
(

Ai1 Ai2 . . . Aim

)

14

to

sup
j1,...,jm

det
(

Aj1 Aj2 . . . Ajm

)

is guaranteed to satisfy a lower bound, thus ensuring that a stable factorization of the
form

A = ÃG,

where Ã is an m×m submatrix of A, can be found.

2.9. The Sherman-Morrison-Woodbury formula. The Sherman-Morrison-Woodbury
formula gives an expression for the rank-k update

(A+ UV t)−1

of the inverse of a matrix A. The following Lemma can be found, for instance, in [8]:

LEMMA 2.6. Suppose that A is an invertible n× n matrix, U is an n× k matrix,
and V is an k × n matrix. If the rank-k update

(2.69) (A+ UV t)

of the matrix A is invertible, then its inverse is

(A + UV t)−1 = A−1 −A−1U(I + V tA−1U)−1V tA−1.

In this paper, given an m×n real matrix A, we will utilize the Sherman-Morrison-
Woodbury formula to perform a specific type of update to the inverse of the m×m
matrix AAt. In particular, we wish to update the inverse of AAt in order to form the
inverse of the matrix BBt, where B is obtained from A by deleting its jth column.
That is,

B = A− uvt,

where u is the m × 1 vector which is the jth column of the matrix A and v is the
n× 1 vector with entries

(2.70) vi =

{

1 if i = j

0 otherwise.

A simple calculation shows that

(

A− uvt
) (

A− uvt
)t

= AAt − uvtAt −Autv + uvtvut(2.71)

= AAt − uut.(2.72)

In other words, if we form the matrix B by deleting the jth column of the matrix A,
then BBt can be formed from AAt by a rank-1 update. The Sherman-Morrison-
Woodbury formula then implies that the inverse of BBt can be computed from
(AAt)−1 via a rank-1 update.

15

3. Numerical apparatus

3.1. Nested Legendre discretizations of sequences of functions. In this paper,
we are confronted with sequences φ1, . . . , φm of functions defined on the interval [a, b]
for which we wish to construct a generalized Gaussian quadrature rule. The collection
of functions φj has the following properties:

• Each function φj is integrable on [a, b] and analytic except at a small number
of points,

• The total number functions is quite large (e.g., m = 10, 000),
• The rank of the set φ1, . . . , φm is low (e.g., 40) to high precision.

In order to construct an efficient quadrature rule, we will take advantage of rank
deficiency to “compress” the sequence φ1, . . . , φm. This means, more specifically,
that we first form a set u1, . . . , uk of orthonormal functions on [a, b] such that each
φi can be approximated by a sum of the form

(3.1) φi(x) ∼
k
∑

j=1

αijuj(x),

and each uj is defined by a sum

(3.2) uj(x) =
m
∑

i=1

βijφi(x).

We then build a generalized Gaussian quadrature rule for the functions u1, . . . , uk.
In the course of constructing that quadrature, it will be necessary to evaluate the
functions uj at arbitrary points on the interval [a, b]. If the sums (3.2) involve a large
number of terms, or if the evaluation of the φi is expensive, then it is impractical to
use formula (3.2) to evaluate the uj. It will therefore be necessary to represent the
function uj in a manner which allows for their rapid evaluation.

An obvious alternative to evaluating sums of the form (3.2) directly is to rep-
resent the functions uj via polynomial interpolation. Let x1, . . . , xn be a mesh of
interpolation points on the interval [a, b] and suppose that the Lagrange polynomials
interpolating u1, . . . , uk at these mesh points represent the functions uj to a given
precision. Then, clearly, the Lagrange polynomial interpolating the function

(3.3) ψi =

n
∑

j=1

αijuj(x)

at x1, . . . , xn approximates φi with controllable precision. As was discussed in Sub-
section 2.3, if Gaussian nodes are used as interpolating points, then the resulting
procedure is numerically stable. However, when the functions φj are not smooth,
polynomial interpolation becomes inefficient and can fail completely for sufficiently
singular functions.

In such cases, where the functions to be interpolated are singular, it is customary to
use an adaptive interpolation scheme instead. That is, the interval [a, b] is subdivided
into a collection of subintervals such that each function φj is accurately interpolated
by a low order polynomial on each subinterval.

In this subsection, we describe a numerical procedure for the approximation of
a sequence of functions via nested Gauss-Legendre polynomial interpolation. The

16

procedure is introduced in [20], but we reproduce it here since it is an integral part
of the algorithm. The input to this procedure is a collection φ1, . . . , φm of functions
integrable on [a, b], a precision ǫ > 0, and a reasonably large integer k which controls
the number of interpolation nodes used on each subinterval (for the computations in
this paper, we used k = 30). The algorithm proceeds in three stages.

Stage 1. In the first stage, the following procedure is used to discretize each of the
φi separately. That is, the following sequence of steps is repeated for i = 1, . . . , m:

1. Construct the 2k Legendre nodes x1, . . . , x2k on the interval [a, b].

2. Let P (x) denote the Lagrange polynomial of order 2k − 1 interpolating φi at
the mesh points x1, . . . , x2k. Construct the coefficients α1, . . . , α2k of P (x) in the
expansion

P (x) =
2k−1
∑

j=0

αjLj(x)

where Lj(x) is the jth order Legendre polynomial.

3. If the inequality

(3.4)
2k
∑

j=k+1

|αj |2 < ǫ

is satisfied, then we conclude that the order k Legendre expansion for φi on the
interval [a, b] is sufficient. Otherwise, we split the interval [a, b] into two subintervals,
[a, (a+ b)/2] and [(a+ b)/2, b)], and repeat the procedure recursively for each of the
subintervals.

Stage 2. Store the endpoints of each subinterval constructed in Stage 1 in an array.
Sort the array and eliminate multiple elements. The resulting array of points on the
interval [a, b] is the array of endpoints of the subintervals of the final subdivision.

Stage 3. Construct the k point Legendre discretization on each the subintervals
obtained in Stage 2 for each of the functions φi(x).

Remark 3.1. The scheme of this subsection is a reasonably reliable mechanism for
the discretization of sets of functions with singularities. The stopping condition (3.4)
is analogous to that usually used to terminate an adaptive quadrature procedure. Just
as any such quadrature procedure can fail for carefully designed counterexamples, so
too can the procedure of this section fail under certain circumstances. The problem,
however, is not encountered in the examples of this paper and whenever the authors
have encountered it in practice, it has been easy to rectify.

3.2. Compression of a finite sequence of functions. This subsection describes a
numerical procedure for compressing a finite sequence of functions by approximating
either the singular value decomposition or a QR decomposition of the sequence.

We begin with two definitions, the second of which is adapted from [20] and [3]. In
what follows, PC([a, b]) refers to the vector space of piecewise continuous functions
on the interval [a, b].

DEFINITION 3.1. A k-point linear interpolation scheme on the interval [a, b] is
a collection of linearly independent functions φ1, . . . φk in PC([a, b]) and a set of

17

distinct nodes x1, . . . , xk in [a, b] together with a linear mapping T : PC([a, b]) →
span{φ1, . . . , φk} such that

(3.5) Tf(xj) = f(xj)

for all j = 1, . . . , k.
We call the x1, . . . , xk interpolation nodes, the mapping T the interpolation map-

ping, and the φj interpolating functions. We also say that the coefficients α1, . . . , αk

of Tf(x) with respect to the basis {φ1, . . . , φk} are the interpolation coefficients for
the function f .

Associated with every k-point linear interpolation scheme is an invertible linear
transformation Rk → Rk which takes the values f(x1), . . . , f(xk) of a function f
at the interpolation nodes to the k interpolation coefficients for the function. The
image Tf of f under the interpolation mapping is, of course, determined by these
interpolation coefficients. We will often refer to Tf as the function defined by the
interpolation scheme and the values f(x1), . . . , f(xk).

Remark 3.2. It is generally possible to extend the definition of interpolation scheme
to encompass interpolating functions φ not in PC([a, b]), as well as interpolation
mappings T defined on larger spaces. We must keep in mind, however, that equation
(3.5) requires that both Tf(x) and f(x) be defined pointwise.

DEFINITION 3.2. We say that the the combination of a k-point linear inter-
polation scheme on [a, b] with nodes y1, . . . , yk ∈ [a, b] and interpolating functions
φ1, . . . , φk, and a k-point quadrature rule with nodes x1, . . . , xk ∈ [a, b] and weights
w1, . . . , wk preserves inner products if

• The nodes x1, . . . , xk of the quadrature rule coincide with the nodes y1, . . . , yk

of the interpolation scheme, and
• The quadrature rule is exact for all products φi(x)φj(x) of the interpolating

functions.

Remark 3.3. The second condition in definition 3.2 together with the assumption of
the linearity of the interpolation scheme ensures that for any two piecewise continuous
functions f(x) and g(x) the quadrature rule is exact for the integral

(3.6)

∫ b

a

Tf(x)Tg(x)dx.

The following are examples of quadrature and interpolation schemes which preserve
inner products:

Example 3.1. The combination of a classical Gaussian quadrature and Lagrange
interpolation at the same Gaussian nodes preserves inner products, since polynomials
interpolation on n nodes produces an interpolating polynomial of order n − 1 and
the product of any two such polynomials is exactly integrated by an n point Gaussian
quadrature.

Example 3.2. Nested Gaussian interpolation — like that of the preceding section —
coupled with corresponding nested Gaussian quadrature formulas also preserve inner
products, since on each subinterval Gaussian interpolation is coupled with a Gaussian
quadrature formula.

Note that the interpolating functions in this example are not continuous, but rather
piecewise continuous.

18

The following theorem, which is a reformulation of Theorem 4.5 in [20], will be
used in approximating the singular value decomposition (or a QR decomposition) of
a sequence of functions.

THEOREM 3.1. Suppose that the combination of a quadrature rule with nodes
x1, . . . , xn and weights w1, . . . , wn, and a linear interpolation scheme with interpo-
lating functions ψ1, . . . , ψn and interpolation mapping T preserves inner products on
[a, b]. Suppose further that φ1, . . . , φm is a collection of piecewise continuous func-
tions on [a, b], U = (uij) is an n×k matrix with orthonormal columns, and R = (rij)
is a k ×m matrix such that

(3.7) φj(xi)
√
wi =

k
∑

l=1

uilrlj

for all j = 1, . . . , m and i = 1, . . . , n. If the functions uj(x) are defined for all
j = 1, . . . , k via the interpolation scheme and the values

(3.8) uj(xi) =
uij√
wi
,

then:

1. The functions uj(x) are orthonormal; that is,
∫ b

a

ui(x)uj(x)dx = δij

for all i, j = 1, . . . , k.
2. The sequence of functions φ̃1, . . . , φ̃m defined by the formula

φ̃j(x) =

k
∑

i=1

ui(x)rij

is identical to the sequence of functions produced by sampling the functions
φ1, . . . , φm at the points {xi} and then interpolating with the interpolation scheme
on [a, b].

The algorithm described below uses as input a sequence of functions φ1, . . . , φm :
[a, b] → R and a quadrature and interpolation scheme which preserves inner products.
The nodes and weights of the quadrature will be denoted by x1, . . . , xn and w1, . . . , wn,
respectively.

The output of the algorithm depends on whether the SVD or a QR decomposi-
tion is used for compression. In either case, the output is a sequence u1, . . . , uk of
orthonormal vectors and a sequence σ1, . . . , σk of positive real numbers. When the
SVD is used, the orthonormal vectors u1, . . . , uk approximate the singular vectors for
the sequence φ1, . . . , φm and the σ1, . . . , σk approximate the corresponding singular
values. In the case of the QR decomposition, the orthonormal vectors u1, . . . , uk ap-
proximate a collection of QR vectors for φ1, . . . , φm and the σj are the corresponding
normalizing factors.

Description of the algorithm.

1. Construct the n×m matrix A with entries

Aij = φj(xi)
√
wi.

19

2. Compute either the SVD of the matrix A or a QR decomposition for the matrix
A. In the first case, produce the factorization

A = UΣV ∗,

where U = (uij) is an n×k matrix with orthonormal columns, V = (vij) is a n m×k
matrix with orthonormal columns, and Σ is a diagonal matrix whose jth diagonal
entry is σj . In the second case, produce the factorization

AΠ = UR,

where U = (uij) is an n × k matrix with orthonormal columns and R is an k ×m
trapezoidal matrix with diagonal entries σ1, . . . , σk.

3. Construct the n× k values uj(xi) defined by the formula

(3.9) uj(xi) =
uij√
wi
.

4. For any desired point x ∈ [a, b], evaluate the functions ui : [a, b] → R using the
interpolation scheme on [a, b].

Remark 3.4. Theorem 3.1 ensures that the accuracy of the approximation produced
by the algorithm of this section depends primarily on the accuracy of the underlying
interpolation scheme.

3.3. Construction of Chebyshev quadratures. In this subsection, we describe a
numerical algorithm for the construction of a Chebyshev quadrature for a finite se-
quence of functions. Given a pre-existing n-point quadrature formula x1, x2, . . . , xn, w1, w1, . . . , wn,
where n > k, which exactly integrates the u1, . . . , uk, it is straightforward to construct
a Chebyshev quadrature for u1, . . . , uk. Because the pre-existing quadrature rule ex-
actly integrates the input functions u1, . . . , uk, the matrix equation

(3.10)

u1(x1) u1(x2) · · · u1(xn)
u2(x1) u2(x2) · · · u2(xn)

... · · · ...
uk(x1) uk(x2) · · · uk(xn)

w1

w2
...
wn

=

r1
r2
...
rk

,

where ri is defined by

ri =

∫ b

a

uj(x)dx

for all i = 1, . . . , k, is satisfied. By Lemma 2.5, there exist i1, . . . , in and w̃1, . . . w̃k

such that

(3.11)

u1(xi1) u1(xi2) · · · u1(xin)
u2(xi1) u2(xi2) · · · u2(xin)

... · · · ...
uk(xi1) uk(xi2) · · · uk(xin)

w̃1

w̃2
...
w̃k

0
...
0

=

r1
r2
...
rk

20

and

(3.12)

k
∑

j=1

|w̃j| ≤ k

n
∑

j=1

|wj|.

In other words, there is by Lemma 2.5 a k-point quadrature formula xi1 , . . . , xik , w̃1, . . . , w̃k

for the k functions u1, . . . , uk. Moreover, the inequality (3.12) ensures that the k-
point quadrature formula is numerically stable assuming the weights of the original
quadrature are reasonably small.

The following algorithm is a computational procedure for constructing such a quad-
rature via the modified Gram-Schmidt algorithm with double orthogonalization, or
one of its variants. This procedure does not realize the theoretical bound (2.5) guar-
anteed by Lemma 2.5. In practice, however, it still leads to the construction of stable
Chebyshev quadrature formulas for the input functions; see Subsection 2.8 for a more
discussion of the numerical stability of the modified Gram-Schmidt algorithm and its
variants.

The algorithm uses as input a sequence u1, . . . , uk of functions and a pre-existing
quadrature x1, . . . , xn, w1, . . . , wn, with n > k, which exactly integrates the functions
u1, . . . , uk, and produces as output a k-point quadrature formula consisting of k nodes
x̃1, . . . , x̃k ∈ {x1, . . . , xn} and k weights w̃1, . . . , w̃k.

Description of the algorithm.

1. For the vector r ∈ Rk whose ith entry is the sum

ri =
n
∑

j=1

ui(xj)wj,

which is the value of the integral
∫ b

a

ui(x)dx.

2. Form the k × n matrix B with entries

Bij = ui(xj)
√
wj.

3. Use the pivoted Gram-Schmidt algorithm with double reorthogonalization to select
a set Bi1 , . . . , Bik of spanning columns for the matrix B and form the factorization

B = Q

(

R11 R12

0 R22

)

,

where R11 is a k × k upper triangular matrix, Q is a k × k orthogonal matrix,
(

Bi1 Bi2 · · · Bik

)

= QR11,

and ‖R22‖2 is small.
4. Use back substitution to construct a solution z ∈ Rk to the k × k system of

equations

R11z = Q∗r,

which is, of course, a least squares solution of the system
(

Bi1 Bi2 · · · Bik

)

z = r.

21

5. Form the new k-point quadrature x̃1, . . . , x̃k, w̃1, . . . , w̃k by letting

x̃j = xij and w̃j = zj
√
wj

for all j = 1, . . . , k.

Remark 3.5. The columns of the matrix B are scaled by the square roots of the
quadrature weights so that the l2 norms of columns of B computed in Step 3 by
the Gram-Schmidt orthonormalization procedure are proportional to the quadrature
weight for the corresponding column.

4. Numerical algorithm

This section describes a numerical algorithm for the construction of the nodes
and weights of an approximate quadrature rule for a sequence of functions. The
algorithm’s input is a sequence of functions

(4.1) φ1, . . . , φm : [a, b] → R

and two accuracies, ǫdisc and ǫquad. The first, ǫdisc, controls the accuracy of the scheme
used to discretize and compress the input functions φ1, . . . , φm, and the second, ǫquad,
is the desired accuracy for the quadrature rule. The algorithm’s output is a quadra-
ture rule consisting of a set of nodes x1, . . . , xl and a set of weights w1, . . . , wl such
that

(4.2)

∫ b

a

φi(x)dx ∼
l
∑

j=1

φi(xj)wj

for all i = 1, . . . , m. The integer l depends on the numerical rank of the input set
φ1, . . . , φm and both ǫdisc and ǫquad.

The algorithm proceeds in three stages. In the first stage, the numerical techniques
of the preceding section are used to discretize and compress the functions φ1, . . . , φm.
In the second, a suboptimal quadrature rule is obtained for the compressed collection
of functions. Finally, in the third phase, an optimization procedure is used to reduce
the number of points needed by the quadrature.

Stage 1: Discretization and compression.

In this stage the following sequence of steps is performed to discretize and compress
the input functions.

1. Use the technique of Section 3.1 to discretize the functions φ1, . . . , φm, so that they
are all represented to the precision ǫdisc. Let φ̃1(x), . . . , φ̃m(x) denote the resulting
discretizations. Also, let x1, . . . , xn denote the discretization nodes and w1, . . . , wn

the weights of the associated quadrature.
2. Apply the procedure of Subsection 3.2 to compress the sequence φ̃1, . . . , φ̃n via

either a QR decomposition or the singular value decomposition. Denote the re-
sulting orthonormal functions by u1, . . . , up and the associated singular values or
normalization factors by λ1 ≥ λ2 ≥ . . . ≥ λp > 0.

3. Discard any of the functions u1, . . . , up corresponding to a singular value (or nor-
malization factor) λj ≤ ǫquad.

4. Denote the functions obtained in this manner by u1, . . . , uk and the associated
singular values (normalization factors) by λ1 ≥ λ2 ≥ . . . ≥ λk > 0.

22

Remark 4.1. It is important that ǫquad be somewhat larger than ǫdisc (for the exam-
ples of this paper, ǫquad/ǫdisc ≥ 100). Because the functions φ1, . . . , φm are discretized
to precision ǫdisc, singular vectors uj corresponding to singular values λj comparable
to ǫdisc contain little information about the functions φ1, . . . , φm. This means that
constructing a quadrature formula which faithfully integrates such singular functions
is pointless, and moreover, since the uj corresponding to singular values λj compa-
rable to ǫsvd are not necessarily smooth, even when the the functions φ1, . . . , φm are
very smooth, it can cause difficulties with the the algorithm described in Step 3 below.

Stage 2: Construction of a k-point quadrature rule.

We now apply the procedure of Subsection 3.3 to construct a k-point quadrature
formula for φ1, . . . , φm. We use as inputs to that procedure the functions u1, . . . , uk

and the nested Gaussian quadrature x1, . . . , xn, w1, . . . , wn constructed in Stage 1.
Note that since the u1, . . . , uk are defined via the nested Gaussian interpolation
scheme, the quadrature x1, . . . , xn, w1, . . . , wn is exact for the functions u1, . . . , uk.

Denote the resulting k quadrature nodes by x̃1, . . . , x̃k and the k quadrature weights
by w̃1, . . . , w̃k. The weights of the nested Gaussian quadrature scheme satisfy the
bound

(4.3)
n
∑

j=1

|wj| ≤ (b− a),

since wj > 0 for all j = 1, . . . , n and the quadrature rule is exact for the function
f(x) = 1. It follows from the discussion in Subsection 3.3 that the new k-point
quadrature formula is numerically stable

Because the discretizations φ̃1, . . . , φ̃m are well approximated by functions in the
span of the u1, . . . , uk, a quadrature rule exact for the functions u1, . . . , uk will ap-
proximately integrate the functions φ̃1, . . . , φ̃m (and, of course, it follows that such
a quadrature rule will also serve for the functions φj(x), assuming the discretiza-
tions constructed in Step 1 are sufficiently accurate). So the new k-point quadra-
ture rule x̃1, . . . , x̃k, w̃1, . . . , w̃k is an approximate quadrature for the input functions
φ1, . . . , φm.

Stage 3: Point-by-point reduction of the quadrature rule.

In this stage, beginning with an n-point quadrature rule x1, . . . , xn,w1, . . . , wn, we
repeatedly apply the following sequence of steps, which attempt to reduce an n-point
quadrature rule for u1, . . . , uk to an (n− 1)-point quadrature rule for u1, . . . , uk.

To perform these calculations, we use the observation of Subsection 2.2; namely,
that the nodes and weights of a quadrature rule exact for a sequence of functions
satisfy a system of nonlinear equations. Given one of the n quadrature nodes xj , we
can use this fact to compute an (n− 1) point quadrature for the functions u1, . . . , uk

via the damped Gauss-Newton algorithm described in Subsection 2.4: we simply form
the system of k nonlinear equations in n − 1 unknowns described in Subsection 2.2
and use as an initial guess for the Gauss-Newton iterations the current quadrature
nodes and weights, excluding the chosen point xj and its corresponding weight wj.

The only problem with this approach is the selection of the quadrature node xj

to eliminate. There are n possible nonlinear systems, each corresponding to one of
the n points which can be omitted. It is computationally expensive to search for a
sufficiently accurate (n− 1)-point quadrature rule by solving each of the n resulting

23

nonlinear systems of equations via the damped Gauss-Newton method. That dif-
ficulty is surmounted via the procedure described in Step 1, wherein the direction
of the step for the first iteration of the damped Gauss-Newton method is computed
for each of the n possible nonlinear systems. The procedure is expedited by using
the Sherman-Morrison-Woodbury update formula, which leads to a computationally
feasible scheme, and the results are used to determine the order in which to remove
quadrature nodes.

Step 1: Rank the remaining nodes.

1. For each i = 1, . . . , k, compute the integrals
∫ b

a

ui(x)dx

using the original nested Legendre quadrature rule formed in Step 1. Form the
vector

r =

r1
r2
...
rk

.

2. Form the Jacobian matrix

J =

u′1(x1)w1 u′1(x2)w2 . . . u′1(xn)wn u1(x1) u1(x2) . . . u1(xn)

u′2(x1)w1 u′2(x2)w2 . . . u′2(xn)wn u2(x1) u2(x2) . . . u2(xn)

...
...

...

u′k(x1)w1 u′k(x2)w2 . . . u′k(xn)wn uk(x1) uk(x2) . . . un(xn)

for the nonlinear system (2.4) in Subsection (2.2), and compute the inverse

A = (JJ t)−1.

of the product JJ t.
3. For each node xk, first use the Sherman-Morrison-Woodbury formula (see Subsec-

tion 2.9) to form the matrix

Ak = (JkJk
t)−1

via two rank-1 updates to A, where the matrix Jk is obtained from J by deleting
its kth and (k + n)th columns. That is, Jk is obtained from J by deleting the
contributions from the node xk and its corresponding weight wk.

Next, compute the damped Gauss-Newton step direction ∆xk for the nonlinear
system obtained by omitting the point xk; i.e., find a solution ∆xk to the least
squares problem

argmin
x

‖Jkx− r‖2,

where r is the vector of definite integrals computed above. The solution to the
minimization problem is found by solving the normal equations

∆xk = (JkJ
t
k)

−1J t
kr = AkJ

t
kr.

24

4. For each k = 1, . . . , n, let ηk denote the l2 norm of the solution vector ∆xk. We
will refer to the value ηk as the significance of the node xk.

5. Renumber the nodes and weights of the quadrature so that {x1, . . . , xn} are ar-
ranged in order of increasing ηj .

Step 2: First pass through the nodes.

For each j = 1, . . . , n, perform the following sequence of steps:

1. Form an initial guess x1, . . . , x̂j , . . . , xn and w1, . . . , ŵj, . . . , wn for the damped
Gauss-Newton method, which excludes the node xj and its corresponding weight
wj.

2. Perform a small number (e.g., 4) of damped Gauss-Newton iterations to form a
(n−1)-point quadrature rule x̃1, . . . , ˜xn−1, w̃1, . . . , ˜wn−1 for the functions u1, . . . , uk.

3. Measure the approximation error

ǫj =

k
∑

i=1

∣

∣

∣

∣

∣

n−1
∑

j=1

ui(x̃j)w̃j − ri

∣

∣

∣

∣

∣

2

for this new quadrature rule.
4. If the error ǫj for the quadrature rule is sufficiently small (i.e., ǫj ≤ ǫquad), then we

accept this (n− 1)-point quadrature rule and go to Step 4.

If this sequence of steps completes without finding a quadrature rule with acceptable
accuracy, then we renumber the points x1, . . . , xn and weights w1, . . . , wn so that

ǫ1 ≤ ǫ2 ≤ . . . ≤ ǫn,

and move onto Step 3.

Step 3: Second pass through the nodes.

We arrive at this stage only if we were unable to find a satisfactory (n− 1)-point
quadrature rule by taking a small number of damped Gauss-Newton steps. For each
j = 1, . . . , n we perform the following sequence of steps:

1. Form an initial guess x1, . . . , x̂j, . . . , xn and w1, . . . , ŵj, . . . , wn for the damped
Gauss-Newton method, which excludes the node xj and its corresponding weight
wj.

2. Use the damped Gauss-Newton algorithm to form an (n− 1)-point quadrature
rule x̃1, . . . , ˜xn−1, w̃1, . . . , ˜wn−1 for the functions u1, . . . , uk. In this step, the
limit m on the number of iterations should be large (for the examples of this
paper, m = 30).

3. Measure the approximation error

ǫj =
k
∑

i=1

∣

∣

∣

∣

∣

n−1
∑

j=1

ui(x̃j)w̃j −
∫ b

a

ui(x)dx

∣

∣

∣

∣

∣

2

for this new quadrature rule.
4. If the error ǫj for the quadrature rule is sufficiently small (i.e., ǫj ≤ ǫquad), then

we accept this (n− 1)-point quadrature rule and go to Step 4.

Step 4: Form the (n− 1)-point quadrature.

If an (n − 1) point quadrature rule with sufficient precision has been found, then
we accept this rule and repeat the procedure of this stage for the newly formed

25

xi wi

0.2768757118897219E-21 0.4385873207003101E-20
0.6728999118496260E-16 0.6670167705957102E-15
0.2913313729367070E-12 0.2065563299999408E-11
0.1363525818876240E-09 0.7260286603891295E-09
0.1466530079834641E-07 0.6011573165242795E-07
0.5526176228089556E-06 0.1770124736858168E-05
0.9556438762298892E-05 0.2415867272187855E-04
0.9137352164364451E-04 0.1836327943155820E-03
0.5528197186769772E-03 0.8884287232428108E-03
0.2340613778507800E-02 0.3023731195124369E-02
0.7487402952102819E-02 0.7813101428951048E-02
0.1919273618673196E-01 0.1624899441619337E-01
0.4125089438263980E-01 0.2844094097856474E-01
0.7699431299223189E-01 0.4336382757029246E-01
0.1282821075952860E+00 0.5919402249047975E-01
0.1950313100451387E+00 0.7398735448703726E-01

0.2754007895160087E+00 0.8623391772361065E-01
0.3663421175354336E+00 0.9502522703162401E-01
0.4641496390531796E+00 0.9991966301938738E-01
0.5648167175087882E+00 0.1007221934294668E+00
0.6641918632800308E+00 0.9731824512000341E-01
0.7580165934350541E+00 0.8960557633305366E-01
0.8419459185715879E+00 0.7752702387328704E-01
0.9116491627096593E+00 0.6119598511874399E-01
0.9630711719694888E+00 0.4108284432044861E-01
0.9928824356753315E+00 0.1819930030488772E-01

xi wi

0.1056470082726196E-21 0.1711096457804046E-20
0.3448276636263963E-16 0.3503308273337532E-15
0.1844497556672273E-12 0.1340813788691161E-11
0.1004613396825143E-09 0.5475770404764035E-09
0.1199010226476309E-07 0.5015698242641016E-07
0.4834665505524823E-06 0.1574374049854322E-05
0.8721446282278398E-05 0.2233377157238088E-04
0.8558255329196107E-04 0.1737239626794526E-03
0.5262332881183370E-03 0.8524600446470783E-03
0.2251655341009627E-02 0.2928241357781042E-02
0.7255657724649352E-02 0.7616225404410970E-02
0.1869906517557028E-01 0.1591836338093090E-01
0.4035483211529235E-01 0.2796728481689857E-01
0.7555760069233022E-01 0.4275972822079389E-01
0.1261876307279175E+00 0.5848899820837419E-01
0.1922011617225488E+00 0.7323146146527266E-01

0.2718197580245527E+00 0.8550269331832136E-01
0.3620819036055107E+00 0.9441537793180152E-01
0.4593842035808489E+00 0.9953654606755140E-01
0.5598231960985849E+00 0.1006639600889222E+00
0.6593340785103139E+00 0.9765633871558868E-01
0.7537053806233217E+00 0.9035707472894443E-01
0.8385666970462145E+00 0.7861734429197797E-01
0.9094519100536209E+00 0.6242511779052747E-01
0.9620432996182802E+00 0.4213323000112514E-01
0.9926707956133087E+00 0.1873187135192821E-01

Table 1. Quadrature formulas for the functions of the form (5.2) with
α ∈ [−.6, 1.0] and b = 20. The 26-point rule on the left was generated
with the QR variant of the algorithm, and the 26-point rule on the
right with the SVD variant. Both achieve full double precision accu-
racy.

(n − 1) point quadrature, beginning with Step 1. Otherwise, we accept the n-point
quadrature rule which was the input to this stage and the algorithm terminates.

Remark 4.2. The process terminates when an n-point quadrature rule cannot be
reduced to an (n− 1)-point quadrature rule without an unacceptable loss of precision.

Remark 4.3. We would like to reiterate that the quadrature rules obtained by this al-
gorithm are not exact for the functions φ1, . . . , φm, but rather depend on the precision
of the approximation used and the pointwise properties of the φj.

5. Numerical Examples

We have implemented the algorithm of this paper for the computation of efficient
quadrature rules and tested it on a number of examples. Below we present sev-
eral of these examples in order to demonstrate the performance of the algorithm.
It was implemented in Fortran 77, compiled with the Lahey-Fujitsu FORTRAN 95,
and all timings were measured on a 2.0 GHz Intel Core 2 Duo processor with 2GB
of RAM (no parallelization was utilized). Where possible, computations were per-
formed in double precision (FORTRAN REAL*8) arithmetic; however, in order to
achieve double precision accuracy for quadrature rules, it is necessary to perform the
computations in extended precision (FORTRAN REAL*16). Because the Intel Core

26

xi wi

0.7142868061585990E-22 0.1160152107855531E-20
0.2456099244659448E-16 0.2509065273801540E-15
0.1388771056068208E-12 0.1016875670063657E-11
0.7923942786393112E-10 0.4349600879799666E-09
0.9728977588843004E-08 0.4086717652474466E-07
0.3945858602101462E-06 0.1282739831111961E-05
0.7004999008550828E-05 0.1775840695185165E-04
0.6647847640796673E-04 0.1322763958769828E-03
0.3909094695073146E-03 0.6144256207665815E-03
0.1591555788166976E-02 0.1989634887947442E-02
0.4880565012011741E-02 0.4888053092794360E-02
0.1201508322521625E-01 0.9711002899742405E-02
0.2491818304126502E-01 0.1636280699646038E-01
0.4515299730588538E-01 0.2424264956181601E-01
0.7352628756922541E-01 0.3249392541983736E-01
0.1099997234334442E+00 0.4033170405949942E-01

0.1538773279072512E+00 0.4724229693878507E-01
0.2040969860767333E+00 0.5299744130306683E-01
0.2594754054419947E+00 0.5756526955130879E-01
0.3188532789291890E+00 0.6101116645139500E-01
0.3811550534088713E+00 0.6342859582873963E-01
0.4453957796025275E+00 0.6490097796110366E-01
0.5106608382341754E+00 0.6548363166007094E-01
0.5760733409165308E+00 0.6519584582093280E-01
0.6407559864297044E+00 0.6401701018681496E-01
0.7037897986529295E+00 0.6188400467055524E-01
0.7641706741669453E+00 0.5868958877875049E-01
0.8207656867459757E+00 0.5428419177206927E-01
0.8722752374352830E+00 0.4848722081318521E-01
0.9172156595977674E+00 0.4111890543212653E-01
0.9539498396044303E+00 0.3206665104837302E-01
0.9808044766847136E+00 0.2139086878064731E-01
0.9963048714773390E+00 0.9450771617397615E-02

xi wi

0.9545672035004698E-22 0.1529382502435904E-20
0.2782141914841101E-16 0.2808039205209724E-15
0.1433442445848540E-12 0.1039911929764398E-11
0.7793572117442273E-10 0.4253421034031052E-09
0.9385234534215939E-08 0.3933760334981154E-07
0.3797811590248750E-06 0.1235803705030886E-05
0.6783814687534227E-05 0.1725353179365193E-04
0.6495463184473910E-04 0.1298334366282352E-03
0.3852594648391139E-03 0.6086396169406588E-03
0.1580066444838872E-02 0.1985699293680274E-02
0.4874206864113175E-02 0.4907602643213011E-02
0.1205644750230908E-01 0.9794765851446592E-02
0.2509445953623319E-01 0.1655504783796611E-01
0.4558557083460269E-01 0.2456292098104041E-01
0.7433570351228120E-01 0.3292041369959096E-01
0.1112672046075921E+00 0.4081110237571449E-01

0.1556251204014568E+00 0.4771399178998336E-01
0.2062913928215772E+00 0.5341223120206637E-01
0.2620423475006598E+00 0.5789177660270919E-01
0.3216956048993508E+00 0.6123393859233695E-01
0.3841661902355933E+00 0.6354343717872484E-01
0.4484687328581966E+00 0.6491062297564529E-01
0.5136935077033405E+00 0.6539475441359519E-01
0.5789715342131883E+00 0.6501741217619580E-01
0.6434353506653515E+00 0.6375971643567762E-01
0.7061776301391591E+00 0.6156055973389270E-01
0.7662083501992056E+00 0.5831564380342947E-01
0.8224122548819472E+00 0.5387967213251687E-01
0.8735123565945287E+00 0.4807758967228032E-01
0.9180534258335345E+00 0.4073548782515963E-01
0.9544319708711901E+00 0.3174482830959985E-01
0.9810102430752318E+00 0.2116533404178935E-01
0.9963450010115773E+00 0.9348448278692109E-02

Table 2. Quadrature formulas for the functions of the form (5.2) with
α ∈ [−.6, 1.0] and b = 50. The 33-point rule on the left was generated
with the QR variant of the algorithm, and the 33-point rule on the
right with the SVD variant. Both achieve full double precision accu-
racy.

2 Duo processor does not support extended precision arithmetic in hardware, the
running times for these computations are quite long.

Throughout this section, we will denote by Jn(z) the nth order Bessel function of
the first kind, by Yn(z) the nth order Bessel function of the second kind, and by Hn(z)
the nth order Hankel function of the first kind,

(5.1) Hn(z) = Jn(z) + iYn(z).

5.1. Functions which are both oscillatory and singular. Classical quadrature
techniques, like Gaussian quadratures, perform poorly when the functions to be inte-
grated exhibit more than one kind of oscillatory or singular behavior. In this example,
we present quadrature rules for functions [0, 1] → R of the form

(5.2)

n
∑

i=1

(

m
∑

j=1

ai,j cos(βjx) + bi,j sin(βjx)

)

xαi ,

27

where the αi are arbitrary real numbers on the interval [−.6, 1.0], and the βj are
arbitrary real numbers on an interval [0, b].

To construct such quadratures, we first chose fairly large integers m and n, and
then construct n Legendre nodes αi on the interval [−.6, 1.0] and m Legendre nodes
βj on the interval [0, b]. We then take all functions of the form

(5.3) xαi cos(βjx) and xαi sin(βjx)

xi wi

0.1229785612931944E-21 0.1975656354324724E-20
0.3552652759524009E-16 0.3567391763467614E-15
0.1686329315315300E-12 0.1205245279219683E-11
0.8100212080727273E-10 0.4310646162233048E-09
0.8480396519577635E-08 0.3435473776420015E-07
0.2999419813536928E-06 0.9380681263322151E-06
0.4775750160241328E-05 0.1165688301296981E-04
0.4182340572497058E-04 0.8041357440032319E-04
0.2326791577716382E-03 0.3553400421394265E-03
0.9141444687391752E-03 0.1117568231732080E-02
0.2744584412742149E-02 0.2706368315522836E-02
0.6682130398844386E-02 0.5351823901681276E-02
0.1379497029777539E-01 0.9027505156251501E-02
0.2498028781481084E-01 0.1342713453729264E-01
0.4073593719986401E-01 0.1808816226118706E-01
0.6109753716986285E-01 0.2257750666507361E-01
0.8573787689934898E-01 0.2661334339415909E-01
0.1141325013227837E+00 0.3007780005914209E-01
0.1457010079575668E+00 0.3296666645566729E-01
0.1798914175653836E+00 0.3533282633911356E-01
0.2162162828182287E+00 0.3724775994063266E-01
0.2542599995624801E+00 0.3878153866772767E-01
0.2936726106825575E+00 0.3999467106048757E-01

0.3341588668019299E+00 0.4093600316907737E-01
0.3754666793859390E+00 0.4164319265743018E-01
0.4173765534810784E+00 0.4214400183613144E-01
0.4596923705410667E+00 0.4245762431761676E-01
0.5022333728490615E+00 0.4259573188716399E-01
0.5448270050049624E+00 0.4256313223505469E-01
0.5873022022823650E+00 0.4235800106227075E-01
0.6294826883836380E+00 0.4197166388463288E-01
0.6711798141862015E+00 0.4138788759007980E-01
0.7121844171914087E+00 0.4058161770611706E-01
0.7522571077315104E+00 0.3951708131079590E-01
0.7911163140906269E+00 0.3814519845080301E-01
0.8284234137301751E+00 0.3640037679024763E-01
0.8637645183766196E+00 0.3419715966891961E-01
0.8966293685769854E+00 0.3142816445555609E-01
0.9263901328780540E+00 0.2796677541655260E-01
0.9522879806764252E+00 0.2368149162837343E-01
0.9734441058145912E+00 0.1847233461780559E-01
0.9889218194127054E+00 0.1233680051765303E-01
0.9978661596654697E+00 0.5456702457360249E-02

xi wi

0.7962322346848315E-22 0.1255518558516502E-20
0.1830884530860187E-16 0.1807251002083772E-15
0.7683378387780577E-13 0.5430995592381254E-12
0.3548822655627213E-10 0.1887682739748173E-09
0.3820064929774288E-08 0.1568277392295615E-07
0.1453085581405940E-06 0.4671196468523313E-06
0.2542069046177732E-05 0.6453818186891716E-05
0.2452467963854058E-04 0.4945575220250773E-04
0.1490989514657686E-03 0.2400742808398220E-03
0.6325800496319742E-03 0.8181326443575235E-03
0.2027015096036673E-02 0.2119810413961939E-02
0.5213355986400703E-02 0.4437537936998829E-02
0.1127123616180105E-01 0.7852211174980829E-02
0.2121486403535344E-01 0.1215005865408980E-01
0.3571945099051861E-01 0.1689083767930460E-01
0.5498138040746230E-01 0.2159081784351869E-01
0.7876554840715572E-01 0.2589061574717723E-01
0.1065681257681138E+00 0.2961183182803991E-01
0.1377839750139660E+00 0.3271991578613246E-01
0.1718183483671372E+00 0.3526008081919886E-01
0.2081399215101480E+00 0.3730762085807319E-01
0.2462954187930989E+00 0.3894030217190292E-01
0.2859051752770733E+00 0.4022648983646625E-01

0.3266515434452085E+00 0.4122168685192172E-01
0.3682659628410250E+00 0.4196875223655011E-01
0.4105169996086324E+00 0.4249935402437477E-01
0.4531999641092431E+00 0.4283556050595227E-01
0.4961279927664242E+00 0.4299113717974382E-01
0.5391242133546008E+00 0.4297240498182741E-01
0.5820145309561993E+00 0.4277862015965356E-01
0.6246205472012950E+00 0.4240185727864892E-01
0.6667521011409383E+00 0.4182636166562592E-01
0.7081988727858907E+00 0.4102730967187124E-01
0.7487204161980902E+00 0.3996889290357553E-01
0.7880339071872188E+00 0.3860165671827315E-01
0.8257988675123893E+00 0.3685914346939630E-01
0.8615983375780399E+00 0.3465427456539984E-01
0.8949168202476468E+00 0.3187687491511273E-01
0.9251176490208435E+00 0.2839583726541435E-01
0.9514276420773934E+00 0.2407310551022889E-01
0.9729462427273851E+00 0.1880072022809006E-01
0.9887074670174289E+00 0.1256986040620092E-01
0.9978240533043199E+00 0.5563859224973946E-02

Table 3. Quadrature formulas for the functions of the form (5.2) with
α ∈ [−.6, 1.0] and b = 100. The 43-point rule on the left was generated
with the QR variant of the algorithm, while the 43-point rule on the
right was generated with the SVD variant. Both achieve full double
precision accuracy.

28

as the input functions φi to the algorithm of Section 5. It is clear the for sufficiently
large n and m, the obtained quadrature will work for all functions of the form (5.2).

In Tables 1, 2, and 3, we list the quadrature nodes and weights for b = 20, 50, and
100. In each case, two quadrature rules were computed, one using the QR decompo-
sition variant of the algorithm and one using the SVD variant. The parameters m
and n were chosen to be m = 900 and n = 100. In Table 4, we report the time spent
computing each of these quadratures as well as the number of quadrature nodes re-
quired. These computations were performed in extended precision arithmetic in order
to ensure double precision accuracy for the resulting quadrature rule.

We also computed single precision (10−8) quadrature rules for b = 20, 50, and 100.
These computations were performed in double precision arithmetic and the results
are reported in Table 5.

b = 20 b = 50 b = 100

QR SVD QR SVD QR SVD
tcheb 208.11 213.21 447.01 457.93 894.71 933.67
tnewt 196.23 195.03 509.25 634.77 1277.34 1315.04
ttot 404.94 408.00 956.14 1091.22 2171.12 2248.01

nodes 26 26 33 33 43 43

Table 4. Execution times (in seconds) for the computation of the
double precision accuracy quadratures of Example 5.1, as well as the
number of quadrature nodes. Results for both the SVD and QR vari-
ants of the algorithm are provided. The CPU time taken by the first
two stages of the algorithm is reported as tcheb while the CPU time for
Stage 3 is reported as tnewt.

b = 20 b = 50 b = 100

QR SVD QR SVD QR SVD
tcheb 1.15 1.18 1.88 1.94 3.28 3.26
tnewt 6.78 6.43 9.33 9.86 15.0 22.3
ttot 7.93 7.61 11.2 11.8 18.2 25.5

nodes 15 15 21 21 30 30

Table 5. Execution times (in seconds) for the computation of the
single precision accuracy quadratures of Example 5.1, as well as the
number of quadrature nodes. Results for both the SVD and QR vari-
ants of the algorithm are provided. The CPU time taken by the first
two stages of the algorithm is reported as tcheb while the CPU time for
Stage 3 is reported as tnewt.

29

5.2. Plane wave expansions. The Green’s function for the Helmholtz equation in
R3 satisfies the following identity, valid for z > 0:

(5.4)
eiωr

r
=

∫ ∞

0

e−z
√

ξ2−ω2

J0(ξ
√

x2 + y2)
ξ

√

ξ2 − ω2
dξ,

where r =
√

x2 + y2 + z2. This formula can be derived by applying the Fourier
Inversion Theorem followed by contour integration. In [9], a scheme for accelerating
fast multipole methods for the Helmholtz equations at low frequency was introduced.
It operates via discretizations of formula (5.4) which hold for x, y, and z satisfying

L ≤ z ≤ 4L
−4L ≤ x, y ≤ 4L.(5.5)

The appropriate quadrature rule ostensively depends on the two parameters ω and
L. In fact, by making the substitutions

λ =
ξ

L
and ω = Lω0

in (5.4), we obtain the equivalent representation

(5.6)
eiωr

r
= L

∫ ∞

0

e−(zL)
√

λ2−ω2

0J0(λ
√

(xL)2 + (yL)2)
λ

√

λ2 − ω2
0

dλ,

which shows that up to rescaling factors, the quadrature rule depends only on the
product ωL, which is the size of the box (5.5) in wavelengths. Moreover, since J0(z)
satisfies the well-known identity

(5.7) J0(z) =
1

π

∫ π

0

cos(z sin(θ))dθ,

which can be found as formula (9.1.18) in [1], in order to generate a discretization of
(5.4) which holds for

a ≤ ωL ≤ b,

it suffices to take as input to the algorithm of Section 5 functions of the form

(5.8) e−x
√

λ2−ω2 λ cos(yλ)√
λ2 − ω2

,

where x, y, and ω are allowed to vary as

1 ≤ x ≤ 4

0 ≤ y ≤ 4b
√

2,(5.9)

a ≤ ω ≤ b.

The algorithm of this paper was applied to functions of the form (5.8) in order to
generate discretizations of formula (5.4) of the form

(5.10)
eiωr

r
≃
∑

j

e−z
√

ξ2

j−ω2

J0(ξj
√

x2 + y2)
ξj

√

ξ2
j − ω2

wj

for boxes of varying sizes. The Stage 1 and Stage 2 discretization steps were per-
formed twice for each choice of ωL and variant (QR or SVD) of the algorithm, once
using extended precision arithmetic and once using double precision arithmetic. The

30

ωL Expansion order

ǫ = 10−3 ǫ = 10−6 ǫ = 10−9 ǫ = 10−15

QR SVD QR SVD QR SVD QR SVD
.5 13 13 30 29 44 44 72 72
5 18 19 33 33 46 46 80 79
10 22 24 36 35 48 49 84 84
25 44 44 53 52 65 63 94 94

Table 6. Orders of the plane wave expansions of Example 5.2 as a
function of box size and accuracy.

Stage 3 algorithm was then used repeatedly to generate quadratures of varying ac-
curacies for each of the boxes. The number of terms in the plane wave expansion
is given in Table 6 as a function of the size of the box in wavelengths, the required
accuracy, and which variant (QR or SVD) of the algorithm is used. Here accuracy is
measured as the largest absolute error occurring in formula (5.10).

Table 7 reports the total time taken by the Stage 1 and Stage 2 computations.
Finally, Table 8 gives the time taken by the Stage 3 procedure. Note that all Stage
3 computations were performed in double precision arithmetic, except for the quad-
rature rules with accuracy 10−15; those computations were performed in extended
precision.

ωL = .5 ωL = 5 ωL = 10 ωL = 25

QR SVD QR SVD QR SVD QR SVD
tdouble 8.84 9.03 8.23 8.60 7.17 8.10 9.14 9.84
tquad 1858.96 1954.31 2046.89 2192.72 2079.71 2227.13 2486.69 2644.03

Table 7. Time (in seconds) taken by the Stage 1 and Stage 2 proce-
dures for quadrature rules of Example 5.2; tdouble gives the CPU time
for the double precision computations and tquad gives the total CPU
time for the extended precision computations.

5.3. Integral representations for H-expansions. Let (p, θ) denote the polar co-
ordinate system defined by

x = p cos(θ) and y = p sin(θ).

As is well known (see, for instance, [18]), if a function φ : R2 → C satisfies the
Helmholtz equation

∇2φ+ ωφ = 0

outside of a disc D of radius R centered at 0 and the radiation condition

lim
t→∞

φ(tx)e−ikt|x|√t = c

31

ωL CPU Time (seconds)

ǫ = 10−3 ǫ = 10−6 ǫ = 10−9 ǫ = 10−15

QR SVD QR SVD QR SVD QR SVD
.5 0.58 0.61 3.19 2.81 15.01 10.33 12055.45 12398.62
5 0.80 0.86 3.95 3.58 12.01 11.32 18468.92 17513.46
10 1.25 1.31 5.03 4.59 14.31 14.21 22018.44 22662.14
25 7.61 8.01 17.22 1.57 38.32 35.21 34646.45 36221.12

Table 8. CPU time (in seconds) required to perform the Stage 3
computations for the quadratures of Example 5.2.

at ∞, then φ(x) can be uniquely represented outside the disc D via the H-expansion

(5.11) φ(x) =

∞
∑

n=−∞
βnHn(ωp)einθ.

Moreover, once N > |ω|R, the error in the approximation

(5.12) φ(x) ∼
N
∑

n=−N

βnHn(ωp)e
inθ.

for |x| = R1 > R decays as (R1/R)N (see, for instance, [18]).
The formula

(5.13) Hn(ωρ)e
inθ =

(−1)n

π

∫ ∞

−∞

eiy
√

ω2−ξ2

√

ω2 − ξ2

(

iξ −
√

ω2 − ξ2

ω

)n

eiξxdξ,

valid for y > 0, can be obtained via manipulation of the well-known representation

(5.14) Hn(z) =
(−1)n

π

∫

C

eiz cos(w)+inwdw,

where C is a properly chosen contour in the complex plane (see [5] for a simple
derivation of (5.14)). In this example, we construct quadratures for formula (5.13)
which hold for x and y satisfying

2L ≤ y ≤ 4L
−L ≤ x ≤ L,(5.15)

and for n = 0, 1, . . . ,M . Since

H−n(z) = (−1)nHn(z),

which is formula (9.1.6) in [1], an L-point quadrature rule for functions of this form
allows us to approximate an H-expansion

(5.16) ψ =
M
∑

n=−M

anHn(ωp)einθ

32

via a sum

(5.17) ψ ≃
L
∑

j=1

bj(ω)eiλjx+
√

ω2−λ2

jy.

ωL M=2 M=4 M=8

ǫ = 10−7 ǫ = 10−15 ǫ = 10−7 ǫ = 10−15 ǫ = 10−7 ǫ = 10−15

1 23 57 27 63 32 66
5 29 60 29 64 33 68
10 33 66 35 67 36 72
15 39 70 39 73 41 79

Table 9. Orders of the expansions (5.17).

If we make the substitutions

(5.18) λ = ξ/L and ω = Lω0

into formula (5.14), then we obtain the equivalent representation

(5.19) Hn(ωρ)einθ =
(−1)n

π

∫ ∞

−∞

eiλ(xL)+i(yL)
√

ω2

0
−λ2

√

ω2
0 − λ2

(

iλ−
√

ω2
0 − λ2

ω0

)n

dλ,

which shows that as with the last example, the appropriate discretization for (5.13)
depends only on ωL.

The QR variant of the algorithm was used to compute quadrature rules for function
of the form (5.16) for various values of ωL and M . Table 9 gives the number of terms
in the expansion (5.17) necessary to obtain precisions 10−7 and 10−15 for boxes of
different sizes and for different values of M . Table 10 gives the time required to
perform the Stage 1 and Stage 2 computations for these quadrature rules, while
Table 11 gives the time taken by the Stage 3 computations. Note that, as usual,
the computations for quadrature rules with accuracy 10−7 were performed in double
precision arithmetic while those for quadrature rules with 10−15 were performed in
extended precision arithmetic.

6. Generalizations and Conclusions

We have presented a simple and robust scheme for the computation of efficient
quadrature rules for a wide class of functions. We demonstrated this algorithm by
generating efficient quadrature rules for several different classes of functions, including
systems of functions exhibiting different kinds of singular and oscillatory behavior.

We close with a number of conclusions and possible generalizations of this work:

1. The results of this paper are purely experimental. While there is a framework for
proving (under certain conditions) the existence of generalized Gaussian quadra-
tures (see [11, 12, 15, 16, 13]), it does not apply to many of the examples of this
paper. Indeed, the numerical experiments of this paper and those of [14, 3, 20]
seem to indicate that such quadratures exist under very general conditions.

33

ωL M=2 M=4 M=8

ǫ = 10−7 ǫ = 10−15 ǫ = 10−7 ǫ = 10−15 ǫ = 10−7 ǫ = 10−15

1 18.50 1999.02 24.16 2796.14 45.12 4274.44
2 24.65 2872.72 32.96 3811.83 55.87 5863.14
5 29.47 3724.73 41.62 4693.70 66.33 7762.44
15 37.92 5234.68 50.98 6359.60 78.56 8702.26

Table 10. Time (in seconds) required by the Stage 1 and Stage 2
computations for the quadrature rules of Example 5.3.

ωL M=2 M=4 M=8

ǫ = 10−7 ǫ = 10−15 ǫ = 10−7 ǫ = 10−15 ǫ = 10−7 ǫ = 10−15

1 1.01 4238.30 1.55 6302.25 2.85 8411.11
5 2.08 5694.78 2.17 6011.20 3.26 8302.36
10 3.38 7604.56 3.76 6540.80 4.36 9221.55
15 6.39 9881.15 6.86 10861.93 6.94 12322.11

Table 11. Time (in seconds) taken by the Stage 3 computations for
the quadrature rules of Example 5.3.

2. Stage 3 of the algorithm of Section 4, wherein quadrature nodes are eliminated one-
by-one, is applicable to a wide range of problems. The method applies wherever
a sparse solution for an underdetermined nonlinear system of equations is being
sought.

3. The quadrature weights generated by the algorithm of this paper are generally,
but not necessarily, positive. In many applications, positive quadrature weights
are desirable. A modification of the algorithm to ensure that the weights of the
resulting quadrature formulae are positive might prove useful.

The Chebyshev quadrature procedure of Stage 2 of the algorithm could be mod-
ified to produce positive weights by replacing the least squares minimization prob-
lem with a linear program. That program can be solved via the simplex method,
which would result in a Chebyshev quadrature. The Stage 3 Newton iterations
could be modified in a number of ways (e.g. barrier methods) to ensure, or at least
encourage, positive quadrature weights.

4. Although there are several difficulties that must be overcome, there is no funda-
mental barrier to generalizing the procedure of this paper to higher dimensions.
A procedure for generating efficient quadrature rules for collections of functions
defined on domains in R2 would have many applications in numerical analysis.
This topic is being vigorously investigated by the authors.

34

5. The scheme of this paper has obvious application to the interpolation of functions.
In particular, the observations of Subsection 2.3 and the algorithm of this pa-
per allow for the construction of stable, efficient interpolation formulas for highly
singular and oscillatory functions.

6. There are a number of applications of this work to the discretization of integral
equations. The ability to produce efficient quadratures for broad classes of col-
lections of functions is by itself useful in the discretization of integral equations,
and the general framework of this paper for “downsampling” a quadrature for-
mula should allow for the reduction of the complexity of discretizations of integral
equations.

References

[1] M. Abramowitz and I. Stegun(editors), Handbook of Mathematical Functions, National
Bureau of Standard, 1964.

[2] A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadephia, 1996.
[3] H. Cheng, V. Rokhlin, and N. Yarvin, Nonlinear optimization, quadrature, and interpo-

lation, SIAM J. Optim, 9 (1999), pp. 901–923.
[4] W. Chew, E. Michielssen, J. Song, and J. Jin, Fast and Efficient Algorithms in Compu-

tational Electrodynamics, Artech House, Norwood, MA, 2001.
[5] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, John Wiley & Sons,

New York, 1991.
[6] G. Dahlquist and A. Björck, Numerical Methods, Dover Publications, Mineola, New York,

2003.
[7] J. Dennis and R. Schnabel, Numerical Methods for Unconstrained Optimization and Non-

linear Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
[8] G. Golub and C. V. Loan, Matrix Computations, Johns Hopkins University Press, Balti-

more, 1983.
[9] L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura, Accelerating fast multipole

methods for the helmholtz equation at low frequencies, IEEE Comput. Sci. Eng, 5 (1998), pp. 32–
38.

[10] M. Gu and S. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR

factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.
[11] S. Karlin, The existence of eigenvalues for integral operators, Trans. Amer. Math Soc., 113

(1964), pp. 1–17.
[12] S. Karlin and W. Studden, Tchebycheff systems with applications in Analysis and Statistics,

Wiley-Interscience, New York, 1966.
[13] M. Krein, The Ideas of P.L. Chebyshev and A.A. Markov in the Theory of Limiting Values

of Integrals, Amer. Math. Soc. Transl. Ser. 2, 12, AMS, Providence, R.I., 1959.
[14] J. Ma, V. Rokhlin, and S. Wandzura, Generalized Gaussian quadrature rules for systems

of arbitrary functions, SIAM J. Numer. Anal., 33 (1996), pp. 971–996.
[15] A. Markov, On the limiting value of integrals in connection with interpolation, Zap. Imp.

Akad. Nauk. Fix-Mat. Otd., 6 (1898). (in Russian).
[16] , Selected Papers on Continued Fractions and the Theory of Functions Deviating Least

from Zero, OGIZ, Moscow, Leningrad, 1948. (in Russian).
[17] P.-G. Martinsson, V. Rokhlin, and M. Tygert, On interpolation and integration in

finite-dimensional spaces of bounded functions, Communications in Applied Mathematics and
Computational Science, 1 (2006), pp. 133–142.

[18] P. Morse and H. Feshbach, Methods of Mathematical Physics, Feshbach Publishing, Min-
neapolis, 1981.

[19] Tyrtyshnikov, A Brief Introduction to Numerical Analysis, Birkhäuser, Boston, 1997.
[20] N. Yarvin and V. Rokhlin, Generalized Gaussian quadratures and singular value decompo-

sitions of integral operators, SIAM J. Sci. Comput., 20 (1998), pp. 699–718.

